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Lecture 10, Part I: Survival Analysis

* Kaplan-Meier curve
* Log-rank Test
* Cox PH Regression

November 18, 2010

Logistic Regression

In linear regression, the response variable Y is continuous

y=a+ X+ 0%+ -+ X, te
e~ N(0,0%)

We are interested in identifying explanatory variables that
help us to predict the mean value of the response by
explaining the observed variation in the outcomes
However, we often have a response variable Y that is
dichotomous rather than continuous

Logistic Regression

We cannot simply use linear regression with 0/1 as outcome

We define the ‘logit’ transformation for the probability of the
outcome variable being a “1” (vs“0”)

logit(p) = In(ﬁ}: a+ X, +-+B.X,

logit(p) can take any value and we can perform regression
How do we interpret coefficients?

If X is a binary variable, B is the log of the odds ratio »l=p)
pz/(l_pz)

Introduction to Survival Analysis

“Time-to-event” data: In some studies, the response variable
of interest is the length of time between an initial observation
and the occurrence of a subsequent event

Despite the name, “survival” analysis isn’t only for analyzing
time until death. It deals with any situation where the
guantity of interest is amount of time until study subject
experiences some relevant endpoint.

This subsequent event is often called a “failure”; the terms
“failure” and “event” are used interchangeably for the
endpoint of interest.




Examples:

Survival Analysis

— Time from birth until death

— Time from start of treatment until remission of disease
— Injection of a lentivirus with a growth factor into mice till the

development of tumor

The time from the initial event until failure is called the

survival time

Time is a continuous measurement that cannot assume
negative values — it is rarely normally distributed

We will study estimation, one-sample/two-sample inference,
and regression in this context

How to Measure Survival

Idea: Report the mean survival time?

Problem: Not robust to outliers

Idea: 5-year survival rate? “long” vs “short” survival
Problem: how to choose the cutoff time?

These two have the same 5-yr survival rates:
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Survival Function

A distribution of survival times can be characterized by a
survival function S(t)

S(t) is the probability that an individual survives beyond time
t, or the proportion of subjects who have not yet failed

If Tis a continuous random variable representing survival

time, then S(t) = P(T>t)

The graph of the survival function S(t) versus time t is called a

survival curve
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The Kaplan-Meier Survival Curve

The Kaplan-Meier method, also known as the product-limit
method, can be used to estimate a survival curve

It is a nonparametric technique that does not make any
assumptions about the underlying distribution of survival
times

Example: A total of 12 mice with a particular genotype were
exposed to radiation and were followed until death




The Kaplan-Meier Curve

Based on this sample, what
can we infer about the
survival?

We begin by ordering the
survival times associated with
each of the 12 mice

Again, ‘survival’ is a general
term

Another example: the mice
with tumor were treated with
a small molecule and were
followed to remission

Mouse Survival

(weeks)
1 2
2 3
3 6
4 6
5 7
6 10
7 15
8 15
9 16
10 27
11 30
12 32

Survival Function

* Note that no one fails at 0 week or at 1 week following
exposure, one mouse fails at 2 weeks, one at 3 weeks, none at
4 weeks, and so on

* N, is defined as the number of mice who have not yet failed at
time t:

- Ny=12,N,;=12,N,=11, ..

* If everyone in the sample fails, then the survival function is

estimated by S(t) =N,/ N,

Survival Function

* Therefore,

S(0) = 12/12 = 1.000
S(2)=11/12=0.917
S(3) = 10/12 = 0.833
S(6) = 8/12 = 0.667

S(32) =0/12 =0.000

* The Kaplan-Meier estimate
of the survival curve is:

Time N, S(t)
0 12 1.000
2 11 0.917
3 10 0.833
6 8 0.667
7 7 0.583
10 6 0.500
15 4 0.333
16 3 0.250
27 2 0.167
30 1 0.083
32 0 0.000

Survival Function

e S(t)is an estimate of the true population survival function
calculated using the information in a sample of observations

Kaplan-Meier survival estimate
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Confidence Bands

* To quantify the amount of sampling variability involved, we
can calculate the standard error of S(t) and use it to construct
confidence bands

Kaplan-Meier survival estimate
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Survival Function

Another way: S(t,) = P(alive at t; | alive at t, ;) x S(t ;)

Probability you survive until time t; = probability you
survive until t,; and then survive until t; given you made
ittot,,

P(alive at t; | alive at t;,) = (# alive at t;)/(# alive at t, ;)

Missing Data: Censoring

¢ Time-to-event data often have data missing in a particular
way: individuals may be lost to follow-up or may drop out of
the study before they experience the event of interest

¢ This incomplete observation of time to failure is known as
censoring

¢ Censored data provide partial information: you do not know
how long a patient lived, but you know that she/he lived at
least as long as the time before being lost to follow-up.

¢ Why would a person be lost to follow-up? The person could
have, e.g., moved to another city, withdrawn from the study,
or died of a different cause.

* The data might be analyzed before the event of interest has
occurred in all subjects

S(0) = 12/12 = 1.000 S(0) = 12/12 = 1.000
S(2) =11/12=0.917 S(2) =11/12=0.917
S(3) =10/12 = 0.833 S(3) = 10/11 * S(2) = 10/11 * 11/12 = 0.833
S(6) = 8/12 = 0.667 S(6) = 8/10 * 5(3) = 8/10 * 10/11 * 11/12 = .0667
S(32) = 0/12 = 0.000 S(32) = 0/12 = 0.000
Censoring

We would like to be able to take advantage of the partial
information contained in censored observations

To do inference in the setting of missing data, we must be
willing to make a big assumption that censoring is non-
informative

In other words, assume that being lost to follow-up is
unrelated to prognosis

If this assumption can’t be made, inference becomes more
complicated if not impossible

If the reason a person is lost to follow-up is related to
prognosis, then our data is biased




Informative Censoring

Example: Researchers administer a new chemotherapy drug
to 10 cancer patients to estimate survival time while on the
drug

5 patients can’t tolerate the side effects and drop out of the
study

If non-informative censoring were assumed, the drug would
probably appear falsely impressive.

Those who dropped out were probably more ill; hence shorter
survival times were disproportionately removed from the
sample.

Kaplan-Meier Estimator

The Kaplan-Meier method can be Mice Survival
modified to account for the partial (weeks)
information about survival times 1 2
that is available from censored 2 3+
observations 3 6
Example: Suppose that, in the 4 6
sample of 12 mice, mice 2 and 6 > U
have not yet died 6 10+
Instead, they are alive after 3 and ; i
10 months of follow-up, 5 1
respectively, but are lost to follow- ” pon
up 11 30
12 32

Kaplan-Meier Estimator

S(t;) = P(alive at t; | alive at t; ;) x S(t; ;)

If there were no censoring, P(alive at t;| alive at t, ;) = (# alive
att;)/(#aliveatt,,)

However, a patient who is alive but censored at time t,; never
really had a chance to make it to t. That patient was not
eligible to die during the interval from t, ; to t;and therefore
should not be counted for computing survival rate in this
interval.

S(0) = 12/12 = 1.000 S(0) = 12/12 = 1.000

S(2) = 11/12 =0.917 S(2) = 11/12 = 0.917

S(3) =10/11 * 11/12 = 0.833 S(3)=5(2)

S(6) = 8/10 * S(3) = 8/10 * 10/11 * S(6) = 8/10 * S(2) = 8/10 * 11/12 =.733

11/12 = .667

Kaplan-Meier Estimator

In this case, S(t) does not change from its previous value if the
observation at time t is censored 5(3)=5(2)=0.917

However, the observation is not used to calculate the
probability of failure at any subsequent time—it is removed
from the denominator

Kaplan-Meier sunvivalestimate

Probability of freedom from failure




KM estimator in R

¢ Data: 2, 3+, 6, 6, 7, 10+, 15, 15, 16, 27, 30, 32

library(survival)

surv = ¢(2,3,6,6,7,10,15,15,16,27,30,32)

status = ¢(1,0,1,1,1,0,1,1,1,1,1,1)
Surv(surv,status)

[11 2 3+ 6 6 7 10+ 15 15 16 27 30 32
> surv.all = survfit(Surv(surv,status))

> summary(surv.all)

time n.risk n.event survival std.err lower 95% CI upper 95% CI

KM estimator in R

> plot(surv.all)

Without censoring

With censoring

2 12 1 0.917 0.0798 0.7729 1.000
6 10 2 0.733 0.1324 0.5148 1.000
7 8 1 0.642 0.1441 0.4132 0.996
15 6 2 0.428 0.1565 0.2089 0.876
16 4 1 0.321 0.1495 0.1287 0.800
27 3 1 0.214 0.1325 0.0635 0.720
30 2 1 0.107 0.1005 0.0169 0.675
32 1 1 0.000 NA NA NA
* We often want to Group 1 Group 2
Compa re the Patient Survival Patient Survival
. . . (months) (months)
distributions of " . 1 1
survival times in two N 3 N
(or more) different 3 6 3 1
populations to 4 6 4 1
determine whether > 7 > 2
. | dﬂ: 6 10 6 3
survival differs . " . ;
between the groups s s s 5
9 16 9 22
10 27
11 30
12 32

Comparison of Two Groups

* It appears that mice in group 1 survive longer than those in
group 2

Kaplan-Meier survival estimates, by group
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Log-Rank Test

We can test the null hypothesis that the two (or more)
distributions of survival times are identical using a technique
called the log-rank test

H,: S,(t) = S,(t)

This test compares the observed number of failures at time t
to the expected number of failures (assuming that the two
curves are identical), and then accumulates the information
over all times

Under the null hypothesis, the test statistic has a chi-square
distribution with 1 df

Since p = 0.013, we reject H, and conclude that the two
distributions of survival times are not identical

Log-Rank Test

How does the log-rank test work?

A direct application of the Mantel-Haenszel test, which
combines data from a series of 2x2 tables

Example: exposure/no exposure vs death/no death divided by
another variable: sex, genotype, etc.

The study period is subdivided into k intervals. For each
interval, a 2x2 table is created. The test statistic is calculated
from the k tables just as in Mantel-Haenszel

The only extra thing to worry about is to remove the censored
cases in between intervals.

Cox PH Model

We are often interested in the relationship between survival
time and a continuous risk factor, or to evaluate the
simultaneous effects of more than one risk factor

Log-rank test is only for one dichotomous variable
Multivariate analysis can be performed using the Cox
proportional hazards model

Multiple linear regression analysis cannot be used because
survival time is rarely normally distributed, and because it
cannot account for censored observations

The Cox model is an example of a semiparametric model

Cox PH Model

We need a new function called the hazard function, h(t)
This is the probability that you will die in the very instant after
time t, given that you have survived until time t

The proportional-hazards model assumes that the hazard rate
for any individual can be modeled as a function of covariates
Xy, .., X as follows:

/'I(f) — /b(f)eﬂlxﬁ'“""ﬂkxk
In A(r) = piX; + o+ B Xy

h(1)




Cox PH Model
h(t) = hy($)e" 5P

hy(t) is called the “baseline hazard rate”
We make no assumptions about its shape.

This is why the model is called semiparametric. We don’t
completely specify the distribution of survival times; we only
specify that changes in covariates will change the hazard rate
proportionally to whatever it was.

patients on treatment 1
probability of failure

patients on treatment 2

time

Interpretation of the Coefficients

Interpreting the parameters of the model is a bit difficult. The
easiest case to understand is when a variable is dichotomous.

Example: Suppose we are analyzing survival times using a Cox
proportional hazards model with covariates X, =gender (1=F), X, =
drug dosage. What is the ratio of hazards between a man and a
woman on the same dose of the drug?

/lvoman(r) _ /l)(f.)eﬂl(l)ﬁ??\,2 _ eﬂl

/,,ma”(f) - ;b(f.)eﬂl(o)wz»(z -

B, is the logarithm of the “hazard ratio”, which can be thought of as
the instantaneous relative risk of death per unit time of a woman
vs. of a man, given that both have survived until time t and with all
other covariates held constant

Summary

Survival analysis to handle survival data which usually have
censored data points and are non-normally distributed

Kaplan-Meier estimator for estimation & one-sample
inference

Log-Rank test for Two-sample comparisons
Cox Proportional Hazards model for regression modeling

Regression Models

* Summary:
— binary (disease vs. normal) > Logistic regression
— discrete (and many others!)

* non-ordered (multiple subclasses) > Polytomous regr

« ordered (number of recurrences) . .
- Poisson regression

— continuous (gene expression) > Linear regression
— censored (patient survival time) > Cox model




Permutation Tests

Lecture 10: Part Il: MU|ﬁP|e TESﬁng * Analyze the problem: think carefully about the null and
alternative hypotheses

* Define a test statistic
* Calculate the test statistic for the original labeling of the

* Permutation Test observations
* Testing for Normality + Permute the labels and recalculate the test statistic
* Family-Wise Error Rate — Exact Test

— Monte Carlo Test

* Calculate p-value by comparing where the observed test
statistic value lies in the distribution of test statistics under

* False Discovery Rate

Sample Quanties

permutation
Testing for Normality: gqgplot Kolmogorov-Smirnov Test
= rnorm(1000); ggnorm(x); qqline(x) * A non-parametric test for comparing two distributions

rt(1000,df=5); ggnorm(x); gqgqline(x)

> x = rnorm(20) ecdf(x)

Normal Q-Q Plot

\%

y = runif(20) 2 ]

Normal Q-Q Plot

> ks.test(x,y)

1 o @

Two-sample Kolmogorov-Smirnov test

data: x and y

1 alternative hypothesis: two-sided ° v—’—'_rr NS
. £ o | !

[ D = 0.6, p-value = 0.001116 .
%
I , ~ A
o > plot.ecdf(x,verticals=T) -
e4 o > lines(ecdf(y),verticals=T, 1lt=2) TT

: > ks.test (rnorm(100), "pnorm”)

Theoretical Quantiles Theoretical Quantiles.




Errors in hypothesis testing

* Typeland Type Il errors
H, is true H, is true
Reject H, Type | error correct

Not reject H, correct Type Il error

J

* P(Type I error) = P(reject Hy | Hy is true) = o “false alarm”
* P(Type Il error) = P(not reject H, | H, is true) = 3 “alarm failure”

* Power = P(reject H, | H, is true) =1-

Multiple Testing

* Large-scale experiments lead to lots of hypotheses
* A typical genome-wide experiment might result in performing
20000 separate hypothesis tests. If we use a standard p-value
cut-off of 0.05, we’d expect 1000 genes to be deemed

“significant” by chance.

If we perform m hypothesis tests, what is the probability of at

least 1 false positive?
P(Making an error) = a
P(Not making an error)=1-a

P(Not making an error in m tests) = (1 — o)™
P(Making at least 1 error in m tests) =1- (1 — o)™

Multiple Testing

Probability of at least one false positive: 1-(1—a)™
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Family-Wise Error Rate

* One option is to control this Family-Wise Error Rate (the

probability of at least one type | error)
* We already saw the Bonferroni method: simply divide a by

the number of tests
If we want to have a=0.05 when we perform 10,000 tests, use

a p-value of 0.05/10000 = 5 x 10 as the threshold for
significance
* We saw that this is too conservative; probability of Type Il

errors is too high
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False Discovery Rate

* In many large-scale experiments, we can tolerate some false
positives

* FWER is appropriate when you want to guard against ANY
false positives

* Thus a popular alternative is control the false discovery rate
(FDR)

FDR

Hyis true | H,istrue Total
Reject H, Vv S R
Not reject H, U T m - R
m, m-m, m

* FDR=V/R

* FDRis designed to control the proportion of false
positives among the set of rejected hypotheses
rather than to control the Type | error rate

Benjamini-Hochberg FDR

To control FDR at level g: Rank (k) | p-value | (k/m)*q| Reject
Order the unadjusted p-values: 1 0.003 0.005 R
< < <
p;<p,< .. <p,, for hypotheses 5 0.008 | 0010 R
Hy, Hyy s H,.
. . . 3 0.012 | 0.015 R

Find the test with the highest

rank k for which the p-value is 4 0021 | 0.020 0

less or equal to (k/m) * q 5 0.070 | 0.025 0

Reject all H;fori < k 6 0.123 | 0.030 0
7 0.250 | 0.035 0

On the right: g=0.05;, m=10 3 0673 0.040 0
9 0.812 | 0.045 0
10 0.890 | 0.050 0

FDR vs pFDR

* When the test statistics are independent, this procedure
controls the FDR at the level g.

Technical Details:
* Actually FDR < g*m,/m. We can try to estimate my/m
* Also true under positive and negative correlations

* For highly correlated data, this may be conservative; use more
powerful FDR procedure by resampling

* Benjamini-Hochberg: FDR = E[ V/R | R>0 ] P(R>0)
* Storey & Tibshirani: pFDR=E[ V/R | R>0]
¢ P(R>0) ~ 1in nearly all cases and so the two are very similar
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g-value

g-value is the minimum FDR that can be attained when calling

that feature significant (i.e., expected proportion of false
positives incurred when calling that feature significant)

The estimated g-value is a function of the p-value for that test

and the distribution of the entire set of p-values from the

family of tests being considered (Storey and Tibshiriani 2003)

Example: In a microarray study for differential expression, if
gene X has a g-value of 0.04 it means that 4% of genes that
show p- values less than or equal to that of gene X are false
positives

These g-values are still estimates

g-valuesin R

install.packages(“gqvalue”)
library(gvalue)

vV V V

gv = gvalue(my.p.values)

> names (qv)

[1] "call" "pi0" "gvalues" "pvalues" "lambda”
> gv$gvalues

[1] 7.716203e-01 5.869116e-01 7.874598e-01
6.701546e-018.442438e-01 8.536429e-01 1.930196e-01
6.788870e-01

R Simulations

Suppose | would like to compare the means of two groups.
H,: the mean is zero vs H;: the mean is not zero

Generate 9000 true hypotheses
Generate 1000 false hypotheses

For each hypothesis, draw 10 samples
— for HO: rnorm(10,mean=0)
— for H1: rnorm(10,mean=3)

Compute p-values from t-statistic

Using alpha = 0.05 - FP: 436, FN: 0

Using alpha/10000 (Bonferroni) = FP: 0, FN: 228
Using FDR = 0.05 - FP: 54, FN: 0

Multiple Testing Corrections

* So what is the procedure in practice?

* Should the significance my gene depend on that of other
genes?

300

Plot the distribution
of p-values

200
L

* What is the proper threshold for g-values?
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